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Diffusion of a polymer chain in porous media

V. Yamakov and A. Milchev
Institute for Physical Chemistry, Bulgarian Academy of Sciences, G. Bonchev Strasse, Block 11, 1113 Sofia, Bulgaria

~Received 15 August 1996!

Using an off-lattice Monte Carlo bead-spring model of a chain in a random environment, we study chain
conformations and dynamic scaling of diffusivity and relaxation times with chain lengthN and density of the
host matrixCobs. Our simulational results show that with growingCobs the mean size~gyration radius! of the
polymer,Rg

2 , initially slightly decreases and then rapidly increases as the macromolecule exceeds the size of
the average entropic wells and stretches through bottlenecks into neighboring wells. The chain dynamics
changes from a Rouse-like one into a reptational one as the permeability of the matrix decreases. Although at
variance with some previous treatments@M. Muthukumar, J. Chem. Phys.90, 4594 ~1989!#, these findings
agree well with a recent analytic approach„S. V. Panyukov, Zh. E´ksp. Teor. Fiz.103, 1287~1993! @Sov. Phys.
JETP76, 631 ~1993!#… to chain conformations in random media. We also suggest a simple scaling analysis,
based on a ‘‘blob’’ representation of the polymer chain, whereby the blob size is governed by the size of the
cavities in the host matrix and yields a faithful description of our computer experiments.
@S1063-651X~97!00802-7#

PACS number~s!: 36.20.2r, 82.45.1z, 87.15.2v
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I. INTRODUCTION

The statistical properties of polymer chains in a quenc
random medium or under geometry constraints@3# have been
the subject of intensive investigation during the last decad
both theoretically@1–12# and experimentally@13–21# be-
cause diffusion is of great relevance for a number of p
nomena, such as chromatography, membrane separatio
trafiltration, biology, sedimentation, oil recovery, etc.

Due to difficulties and uncertainties in the experimen
characterization of the porous media@17#, and the inevitabil-
ity of approximations in the analytical treatment of the pro
lem @1,2#, however, the nature of the chain movement in
random medium is still far from being well understood, a
theoretical predictions, pertaining even static conformatio
properties of such chains, are controversial@1,2#. Thus, on
the ground of replica calculations within a variational a
proach one predicts three regimes@1# in which the scaling of
the gyration radiusRg

2 with the number of repeatable units o
the chain with excluded volume interactions,N, goes asRg

2

}N6/5 for low-, Rg
2}N for medium, andRg

2}Cobs
2/3N2/3 for

high density of obstacles,Cobs, so that the porous medium
generally shrinks the size of the coil@24–26#. On the con-
trary, a regular expansion in a small parameter@2# predicts a
Gaussian statistics for chains, shorter than the localiza
length of the medium whereas sufficiently long chains
typically distributed over severalentropicpotential wells so
thatRg

2}N6/5, that can be interpreted as a self-avoiding ra
dom walk, each step of which is equal to the average
tanceL between neighboring wells,L}Cobs

1/3 . Chains of me-
dium length,N,L, are expected to stretch out into a strin
Rg
2}N2.
The scaling dependence of the diffusion coefficient,DN ,

on N andCobs poses a number of questions too. While t
original scaling predictions, based on reptation dynam
@27,40# , DN}N22, have been verified by Guillot, Leger, an
Rondelez@15# and Lumpkin@12#, significant discrepancie
between the reptation idea and other experimental meas
ments have been reported@18–21#. Attempts to interpret ex-
551063-651X/97/55~2!/1704~9!/$10.00
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isting data in terms of alternative models, e.g., the so ca
‘‘hydrodynamics scaling model’’@21# are unable to describe
observations@22# either @23#.

Computer simulations, one might believe, which, in pri
cipal, are statistically exact within the framework of the r
spective model, and are free from undesirable side effect
laboratory experiments, could prove important in resolvi
much of the controversy. However, simulational results a
differ, mainly because different models of the host mat
~the porous medium! are used. Thus it has been sugges
that the chain dynamics in a dense system can be diffe
from reptational ones@28–31#, with DN}N23 for a Gaussian
chain@30# and ln(DN)}2N for such ones with excluded vol
ume interactions.

In the present investigation, we use, as a host matrix
equilibrated dense solution of identical polymer cha
which is frozen in different configurations, and let a sing
chain ~or a small number of chains! move through these re
alizations of a random medium, Sec. II. As will be show
below, Sec. III, the computational results agree well with
recent treatment of the conformational properties of a ch
in a random environment@2#. We also suggest a simple sca
ing description of our results in Sec. IV, so that data
various chain lengths and different density of the medi
collapse on a single functional relationship. As is emph
sized in Sec. V, it appears, that a representation of the p
mer chain as a sequence of ‘‘blobs,’’ with size equal to t
mean size of the cavities in the host matrix, provides a ba
for a possible scaling analysis and a good description
computational results, at least for the range of chain leng
and obstacle densities, feasible in contemporary comp
experiments.

II. THE MODEL

An off-lattice bead-spring model of a polymer chain@32#,
placed in a random medium of obstacles is studied b
Monte Carlo simulation technique. This model of a coar
grained macromolecule has been successfully used rec
1704 © 1997 The American Physical Society
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55 1705DIFFUSION OF A POLYMER CHAIN IN POROUS MEDIA
for studies of polymer solutions atu conditions@33,34#, in
constrained geometries~capillaries, slits! @35,36#, or at ad-
sorbing surfaces@37,38#, and is known to reproduce faith
fully the expected Rouse behavior of a polymer system w
excluded volume interactions. In our Monte Carlo simulati
we use a standard Metropolis algorithm whereby an
tempted move of a randomly selected particle in a rand
direction is accepted with probability, equal to

P5H exp@2~Enew2Eold!/kBT#, for Enew.Eold

1, otherwise
~1!

whereEnew and Eold are the energies of the new and o
system configurations, calculated with the following intera
tion model potentials.

The so called FENE~finite extensible nonlinear elastic!
potential is used for the bonded interaction between ne
boring beads along the chain,

U~r !5H 52kR2ln@12~r /R!2#, for 2R,r2 l 0,R

`, otherwise
~2!

where r is the distance between two successive bea
l 050.7 is the unperturbed bond length,R50.3 andk520 ~in
our units of energykBT51.0) are the elastic constant of th
FENE potential which behaves as a harmonic potential
r2 l 0!R.

The nonbonded interaction is described by a Morse po
tial,

U~r !5UM@exp~22ar !22exp~2ar !#,

for 0,r2rmin,` ~3!

where rmin50.8, UM50.1, and the large value ofa524
makes interactions vanish at distances larger than unity
that an efficientlink-cell algorithm@32# for short-range inter-
actions can be implemented. The total volume is ther
divided into hypothetical cells of size unity so that a partic
in a particular cell may interact only with other particles
the adjacent cells (26 such cells in three dimensions!. The
radius of the beads and the interactions, Eqs.~2! and ~3!,
have been chosen such that the chains may not inte
themselves or each other in the course of their movem
within the box.

The porous medium consists of an initially relaxed a
then frozen network of polymer chains of lengthN516 and
the monomers have the same size as those of the diffu
chain. The concentration of the networkC is varied and the
behavior of diffusing chains of various lengthN is studied in
the good solvent regime,kBT51.0, since, from previous
studies of the model, it is known that theu temperature
kBTu50.62 @33#.

Several types of mean-square displacements@32# are cal-
culated as functions of time, measured in Monte Carlo st
~MCS! per monomer~bead!, whereby 1 MCS is the time
needed for all monomers to perform an attempted m
Dx,Dy,Dz<60.5 in a random direction.

g1~ t !5^@r N/2~ t !2r N/2~0!#2&,

g2~ t !5^@r N/2~ t !2r CM~ t !2r N/2~0!1r CM~0!#2&, ~4!

g3~ t !5^@r CM~ t !2r CM~0!#2&,
h
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wherer CM ,r N/2 are the radius vectors of the center of ma
and of the middle inner monomer of a polymer chain. W
g3(t) from Eq. ~4! the diffusion constantDN , defined as

6DN5 lim
t→`

@g3~ t !/t# ~5!

and several relaxation timest1, t2, t3, defined as@39#

g1~t1!5^Rg
2&,g2~t2!5 2

3 ^Rg
2&,g3~t3!5g2~t3! ~6!

are calculated.
The simulations that have been performed use a volu

of 323 and in the highest concentration regime they cont
up to 49 152 fixed monomers in 3072 chains of leng
N516 which form the porous media. The single diffusin
chain immersed into this host matrix has been chosen w
lengths of 8, 16, 32, and 64 monomers. For longer cha
even at intermediate obstacle densities it was found that
chains practically do not move. To estimate the diffusi
constant within an error of less than 10% we performed up
108 MCS for the diffusing chain in the highest concentrati
regimes, and averaged the results of about 100 indepen
runs in two or three different random media.

III. MAIN RESULTS

A. Static properties of the diffusing chain

In Fig. 1 we plot the variation ofRg
2 with an increasing

system densityC and, for comparison, also give the respe
tive change for a system of moving medium~dynamic host
matrix! of equal density. Evidently, one observes an init
weak decline and then a growth of the gyration radius w
increasing density of the obstacles. This is one of our cen
results, and it does not confirm earlier predictions@1#, but is
in agreement with a more recent result@2#. From Fig. 1 it is
also seen that this increase ofRg

2 sets in at a lower density o
the porous medium when the diffusing chain is longer. W
believe that this crossover effect sets in when a long chai
not able to fit into the cavities which play the role of entrop
‘‘traps’’ in the host matrix.

If one defines an effective Flory exponent,neff , from the
scaling relationRg

2}N2neff, it is then evident from Fig. 2 tha
in contrast to the case of a polymer solution with no o
stacles, where the screening of excluded volume interact
with increasing concentration renders all chains to beh
like Gaussian,neff→0.5, in the porous mediumneff growsas
the free volume of the medium decreases. Of course, s
we deal generally with rather short chains, one could ref
mulate this result in terms of a growingpersistentlength of
the chains as the host matrix becomes denser, rather tha
terms ofneff . One may thus conclude that in the high dens
regime of obstacles and long chain lengths the conforma
of the chain is governed predominantly by the density flu
tuations of the porous environment. The chain follows t
distribution of the cavities and channels, formed in the po
mer network, and one observes an effective renormaliza
of the Kuhn length of the chain, which becomes equal to
average distance between the cavities. This leads to the
served increase of the gyration radius of the chains.
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FIG. 1. Mean-square gyration radiusRg
2 vs

total densityC of the system for three differen
chain lengths~given as a parameter! in the case
of equilibrated polymer solution~no fixed ob-
stacles! ~full symbols!, and for a frozen host ma
trix ~empty symbols! at equivalent total density.
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Eventually we should also like to point out that not on
the overall dimensions of chains vary, but also the bo
length ^ l 2& itself—Fig. 3. Evidently the decrease ofl does
not exceed 3% but one should bear in mind that as fa
each monomer in a coarse-grained model accounts for
eral chemical bonds, a compression also occurs at the le
scale of a few bonds.

B. Dynamic properties of the diffusing chain

Typical dynamic properties like the scaling of diffusio
coefficientDN with N, Fig. 4, and of relaxation times, e.g
t1, Eq. ~6!—Fig. 5—were found to change systematica
from typical Rouse-like behavior (DN}N21,t}N2n11) to
reptational behavior@40#, O” N}N22,t}N3 as the free vol-
ume of the porous medium decreases. Because of the
slow dynamics of the chain among the obstacles some o
characteristic times ast3 could not be determined
(t3'3.7t1 @32,33#! within the time interval of the simula
d

s
v-
th

ry
er

tion. Thus we believe that we find a clear evidence that w
growing density of the medium the reptational character
transport through the obstacles becomes progressively d
nating. Indeed, as the porous medium becomes denser
should expect the chains to move along existing channels
means of a reptational mechanism, as is demonstrated
DN and t1 here. We were not able to study the very hig
concentration regimes or longer chains, where we find t
the diffusing chain is blocked by the obstacles and pra
cally does not move.

IV. CROSSOVER SCALING OF A POLYMER
IN A QUENCHED MEDIUM:

THEORETICAL PREDICTIONS AND SIMULATIONS

A. Crossover scaling for statics properties

To study the crossover scaling for the gyration rad
Rg and the end-to-end distanceR of a polymer chain in a
-

.

FIG. 2. Variation of the effective Flory expo
nentneff with total density in a polymer solution
~full symbols!, and in a porous medium~empty
symbols! at equivalent density of the obstacles
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FIG. 3. Averaged squared bond length^ l 2& vs
host matrix density for three different chai
lengths.
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quenched random medium, we follow the work of Paulet al.
@41# about a polymer solution. In the case of diffusion of
single chain, placed in a random medium of frozen polym
chains, one must distinguish between the statistical par
eters of the diffusing chain and those of the surround
immobile chains, while in the case of a polymer solution@41#
they are identical.

The characteristic size of the pores is the correlat
length of the frozen polymer solution of obstaclesjobs, and
it depends on the volume fraction of the obstac
Cobs5Cl3 as

jobs}Cobs
2n/~3n21! , ~7!

wheren50.588 is the Flory critical exponent.
In the dilute limit the chain does not feel geometric co

straints and̂Rg&0 scales as
r
-

g

n

s

-

^Rg
2&0}N

2n ~8!

with N the length of the diffusing chain in monomer units
At high obstacle concentrations~smalljobs) or for a large

enough chain, when̂Rg
2&@jobs

2 we see~cf. Fig. 2! that the
mobile polymer chain behaves more like a stretched str
asCobs is raised, which can be expressed as

^Rg
2&}Cobs

x N2ncross ~9!

with some exponentx which is still to be determined. Here
ncrossis the limiting value of the effective Flory exponent fo
a diffusing chain at high obstacle concentrations.

The crossover regime occurs at obstacle densityCobs*
when the size of the polymer becomes equal to the size
the pores,̂Rg

2&5jobs
2 . At this regime from Eqs.~7! and~8! it

follows:
m

-

FIG. 4. Log-log plot of diffusion coefficient
DN vs chain lengthN at different density of the
obstacles. The change of the slopes fro
'21 at Cobs50 to '22 in a porous system
with vanishing free volume is given in the leg
end.
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FIG. 5. Scaling of relaxation timet1, Eq. ~6!,
with chain lengthN at several obstacle densitie
The limiting slope values 2.22 and 2.96 are clo
to 2.18 and 3, characteristic for Rouse- and re
tational behavior, respectively.
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Cobs* }N2~3n21!. ~10!

The exponentx in Eq. ~9! has to be determined from th
condition of a smooth matching between Eqs.~8! and ~9! at
Cobs5Cobs* which yields

x52
n2ncross
123n

. ~11!

When substituted in Eq.~9! and using Eq.~7!

^Rg
2&}Cobs

2~2n22ncross!/~3n21!N2ncross}j222ncross/nN2ncross.
~12!

Using as a new variable

z5^Rg&0 /jobs5NnCobs
n/~3n21! ,

the relative change of the gyration radius with the concen
tion of obstacles in the system can be expressed as a c
over scaling functionf gyr(z) of the parameterz, which be-
haves at the limiting cases as

^Rg
2&

^Rg
2&0

5 f gyr~N
nCobs

n/~3n21!!5H const, z,1

z2[222~ncross/n!] , z.1.
~13!

The main difference in our result in comparison to t
case of a polymer solution is the different power ofz for
large z.1. In the case of a polymer solution, whe
ncross50.5, this exponent is equal to2(221/n)'21/3, thus
determining a decreasing scaling functionf gyr(z) for z.1,
while in the case of a porous medium we obtain an expon
equal to2(222ncross/n).0 for ncross.n since the confor-
mations of the chain in the host matrix are not Gauss
Hence, we should expect an increasing power-law beha
of f gyr(z) for z.1. Within the range of lengths of chain
which do really diffuse through the medium we measure
high obstacle densityncross50.7–0.78, ~Fig. 2! and the
-
ss-

nt

n.
or

t

power of z in Eq. ~13! is about 0.37–0.64. However, whe
we plot the scaling function, f gyr expressed as
^Rg

2&/N2n^ l 2& vs N(Cl3)1/(3n21), in contrast to@41# we do
not obtain any reasonable scaling for largez.1 @Fig. 6~a!#.

We observe a good scaling only if we plot^Rg
2&/N2n^ l 2&

vs N(Cl3)2/(3n21) @Fig. 6~b!, region I,II# and the slope of
f gyr in a log-log plot atN(Cl

3)2/(3n21).1 in region II equals
0.6, as indicated by the solid line, that corresponds
ncross50.78 in Eq. ~13!. This result can be explained b
renormalization of the polymer lengthN, taking into account
the growing persistent length of the chains as the host ma
becomes denser, as has already been mentioned above
sufficiently long chain follows the distribution of cavities
formed in the polymer network, so that neighboring cavit
are separated from each other by narrow channels~bottle-
necks!. The average number of monomersg of the chain per
cavity of characteristic sizejobs is

g}jobs
1/n}Cobs

21/~3n21!. ~14!

If we neglect the fraction of monomers, situated in bott
necks, the number of globules~or, the number of occupied
cavities! Ng per chain will be

Ng5N/g}NCobs
1/~3n21! ~15!

and, consequently,

NgCobs
1/~3n21!}NCobs

2/~3n21! . ~16!

This means that we obtain a good scaling off gyr , as a
function ofNg(Cl

3)1/(3n21)5N(Cl3)2/(3n21), rather than of
N(Cl3)1/(3n21).

Consequently, Eq.~13! becomes valid if forz.1 the
polymer lengthN is replaced by the renormalized leng
Ng . As far as forz,1 the crossover functionf gyr(z) is a
constant, independent ofz, we may formally replaceN with
Ng in z even for z,1, thus obtaining the same crossov
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FIG. 6. ~a! Log-log plot of the scaling func-
tion f gyr vs the scaling variableNCobst

1/(3n21). The
upper curves give the data for the mean-squ
end-to-end distanceR2, while the lower ones
show the results forRg

2 . ~b! The same vs the
scaling variable NCobst

2/(3n21). Region I—free
chains, II—crossover, and III—renormalized fre
chains. The slope 0.6 corresponds
ncross50.78.
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function, but of a modified argumentzm5NnCobs
2n/(3n21)

@note thatzm dependence on densityCobs is heresquared, in
contrast to Eq.~13!#.

Our main conclusion is that the crossover scaling funct
f gyr , derived for polymer solutions, can be applied to t
case of a polymer in porous media when the scaling varia
z is replaced byzm due to the renormalization of the Kuh
length of the chain. This renormalized Kuhn length sho
reflect thus the properties of the porous medium rather t
characterize those of the unperturbed polymer chain its
When the free volume of the porous medium is small we
an exponentncross rather than the Gaussian exponent of 0
Moreover, for very long chains,N→`, we expect
ncross→n, i.e., in the asymptotic limitz@1 the chain should
behave as a self-avoiding random walk~the cavities in the
porous medium, already occupied by parts of the chain,
main unaccessible for the rest of the chain! with a step length
determined by the properties of the medium@Fig. 6~b!, re-
n

le

d
n
lf.
e
.

e-

gion III#. An indication for this expected behavior is su
gested by Fig. 1, where forN564 andC.1 the gyration
radiusRg appears to saturate with obstacle densityC. The
same considerations are also valid for the mean-square
to-end distancêR2&, which is proportional tô Rg

2& with a
factor of 6, and is depicted in Fig. 6 too.

B. Crossover scaling for the diffusion coefficientDN

In a similar way we analyze the crossover scaling of
diffusion coefficient too. In the dilute limit we observ
Rouse behavior ofDN

DN
0}N21. ~17!

At high obstacle concentrations we find reptational diff
sive behavior~cf. Fig. 4! which could be expressed as
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FIG. 7. ~a! Extrapolation of the acceptanc
rateA(N) vs N21 for obstacle densities rangin
from 0 to 1.0. ~b! Acceptance rate
^ l 2&A`/^ l 2&0A0

` and mobility ^ l 2&W/^ l 2&0W0 vs
density Cobs and the ratio (W/W0)/(A/A0) vs
density.
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DN}N22Cobs
z . ~18!

The smooth matching of these two equations at the cr
over regime yields the samez as for a polymer solution@41#:

z521/~3n21! ~19!

and

DN}N22Cobst
21/~3n21! . ~20!

Hence the relative~dimensionless! diffusion coefficient
DN /DN

0 becomes a scaling functionf D(z) of the ratio of two
characteristic lengthsz5(Rg /jobs)

f D~z!5 f D~NCobs
1/~3n21!!. ~21!

However, the density depence ofDN is not trivial. Fol-
lowing Paul et al. @41# we introduce, in our analysis, th
effective monomer reorientation rateW which accounts for
s-

the density dependence of monomeric friction and is cal
lated fromg1(t) defined with Eq.~4! as suggested in@41#. Its
introduction is needed in order to allow for the effect
chain ends movements which are much faster than thos
the inner monomers and affect the scaling of time. As
matter of fact, one needs a measure of how the elemen
movements of the monomers, which contribute essentiall
diffusion, change with varying density of the medium. Th
is evident from Fig. 7~a! where the acceptance rate of th
attempted movesA ~that is, the percentage of success
jumps over the total number of attempted moves per mo
mer! is shown to scale asN21 in consequence of the highe
mobility of monomers near the chain ends. SinceA is aver-
aged over all monomers of the chain, the behavior show
Fig. 7~a! is observed. The extrapolated (N→`) acceptance
rate A, plotted as ^ l 2&A`/^ l 2&0A0

` and mobility
^ l 2&W/^ l 2&0W0, where the subscript 0 denotes extrapolati
to Cobs50, shows@Fig. 7~b!# similar behavior, as in the cas
of a solution@41,39#.
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FIG. 8. ~a! Scaling plot of ND/W^ l 2& vs
N(Cl3)1/3n21 for the chain lengths as indicated i
the figure.~b! The same vsN(Cl3)2/3n21.
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There is a difference, however, betweenA andW, the
latter decaying much faster with increasing density thanA.
SinceA refers toall attempted moves, including highly co
related ones like forward and backward jumps, which c
tribute nothing to the chains movement, one sees from
7~b! that forCobs50.5 only about 50% of the moves contrib
ute to diffusion as compared toCobs50. Therefore we plot in
a log-log scale the normalized diffusion coefficie
NDN /W^ l 2& vs N(Cl3)1/(3n21)—Fig. 8~a!—and vs
N(Cl3)2/(3n21)—Fig. 8~b!. Again we find poor scaling for
N(Cl3)1/(3n21) as scaling variable@Fig. 8~a!#, and much bet-
ter scaling forN(Cl3)2/(3n21) @Fig. 8~b!#. This suggests tha
the renormalization effects, discussed above, play an im
tant role for the dynamics too, and we must u
zm5Ng(Cl

3)1/(3n21)5N(Cl3)2/(3n21) from Eq. ~16! as an
argument for the scaling function. With this rescaled varia
we do see all three curves in Fig. 8~a! collapse on a single
master curve in Fig. 8~b! which qualitatively resembles tha
for a polymer solution@41#.
-
g.

r-

e

V. DISCUSSION

In the present investigation we examine the variation
static and dynamic properties of isolated polymer chains
fusing in a quenched environment of randomly distribut
polymer chains with increasing density of the medium. Sin
we focus our studies on chain lengths for which a detecta
displacement of the chain center of mass is still possible,
findings deviate from some previous analytic predictions@1#
and support others@2#, based on a different treatment.

Thus clear evidence for a change from Rouse-like to r
tational dynamics with decreasing free volume of the poro
medium is produced which proves that our coarse-grai
polymer chains are still long enough so as to perform rep
tional movement between adjacent potential wells.

The static host matrix, in which our species move, is o
served to lead to progressive stretching of the chains as
cavities of the medium decrease in size with growing d
sity. Assuming that such cavities are filled with monome
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and may be considered as a sequence of genera
‘‘blobs,’’ each of a size determined by the density of the h
matrix, we suggest a simple scaling interpretation which p
vides a consistent description of the size of the chain an
its diffusion coefficient in the whole interval of density an
chain lengths examined.
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