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Diffusion of a polymer chain in porous media

V. Yamakov and A. Milchev
Institute for Physical Chemistry, Bulgarian Academy of Sciences, G. Bonchev Strasse, Block 11, 1113 Sofia, Bulgaria
(Received 15 August 1996

Using an off-lattice Monte Carlo bead-spring model of a chain in a random environment, we study chain
conformations and dynamic scaling of diffusivity and relaxation times with chain ledgthd density of the
host matrixC,,s. Our simulational results show that with growify,sthe mean sizégyration radiug of the
polymer,R2, initially slightly decreases and then rapidly increases as the macromolecule exceeds the size of
the average entropic wells and stretches through bottlenecks into neighboring wells. The chain dynamics
changes from a Rouse-like one into a reptational one as the permeability of the matrix decreases. Although at
variance with some previous treatmefs. Muthukumar, J. Chem. Phy90, 4594 (1989], these findings
agree well with a recent analytic approa@ V. Panyukov, Zh. Esp. Teor. Fiz103 1287(1993 [Sov. Phys.
JETP76, 631(1993]) to chain conformations in random media. We also suggest a simple scaling analysis,
based on a “blob” representation of the polymer chain, whereby the blob size is governed by the size of the
cavities in the host matrix and yields a faithful description of our computer experiments.
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PACS numbegs): 36.20—r, 82.4542z, 87.15-v

I. INTRODUCTION isting data in terms of alternative models, e.g., the so called
“hydrodynamics scaling modelT21] are unable to describe
The statistical properties of polymer chains in a quenche®bservation§22] either[23].
random medium or under geometry constrajBishave been Computer simulations, one might believe, which, in prin-
the subject of intensive investigation during the last decadegipal, are statistically exact within the framework of the re-
both theoretically[1-12] and experimentallf13—21 be-  Spective model, and are free from undesirable side effects of
cause diffusion is of great relevance for a number of phelaboratory experiments, could prove important in resolving
nomena, such as chromatography, membrane separation, ftuch of the controversy. However, simulational results also
trafiltration, bio|ogy, sedimentation, oil recovery, etc. differ, mainly because different models of the host matrix
Due to difficulties and uncertainties in the experimental(the porous mediupare used. Thus it has been suggested
characterization of the porous medi&7], and the inevitabil- ~ that the chain dynamics in a dense system can be different
ity of approximations in the analytical treatment of the prob-from reptational onef28—31, with DN~ for a Gaussian
lem [1,2], however, the nature of the chain movement in achain[30] and InOy)=—N for such ones with excluded vol-
random medium is still far from being well understood, andume interactions.
theoretical predictions, pertaining even static conformational In the present investigation, we use, as a host matrix, an
properties of such chains, are controver§igP]. Thus, on  €quilibrated dense solution of identical polymer chains
the ground of replica calculations within a variational ap-Which is frozen in different configurations, and let a single
proach one predicts three reginjd$ in which the scaling of ~ chain(or a small number of chaifsnove through these re-
the gyration radiu®? with the number of repeatable units of alizations of a random medium, Sec. Il. As will be shown

the chain with excluded volume interactioms, goes ast below, Sec. lll, the computational results agree well with a
«N®5 for low-, R20<N for medium, andR2 C2/35N2/3 fo recent treatment of the conformational properties of a chain

in a random environmer2]. We also suggest a simple scal-
ing description of our results in Sec. IV, so that data for
various chain lengths and different density of the medium
ﬁollapse on a single functional relationship. As is empha-

ized in Sec. V, it appears, that a representation of the poly-
mer chain as a sequence of “blobs,” with size equal to the
mean size of the cavities in the host matrix, provides a basis
for a possible scaling analysis and a good description of
computational results, at least for the range of chain lengths
and obstacle densities, feasible in contemporary computer
experiments.

high density of obstacle@obs, so that the porous medium
generally shrinks the size of the c§R4-26. On the con-
trary, a regular expansion in a small paramé¢®mpredicts a
Gaussian statistics for chains, shorter than the localizatio
length of the medium whereas sufficiently long chains ar
typically distributed over severantropic potential wells so
that R2<N®5, that can be interpreted as a self-avoiding ran-
dom walk, each step of which is equal to the average dis-
tanceL between neighboring wellg,«C2. Chains of me-
dium length,N<L, are expected to stretch out into a string,
R3N2,

The scaling dependence of the diffusion coefficiéhy,,
on N and C,s poses a humber of questions too. While the
original scaling predictions, based on reptation dynamics
[27,40, Dy<N "2, have been verified by Guillot, Leger, and  An off-lattice bead-spring model of a polymer ch&82],
Rondelez[15] and Lumpkin[12], significant discrepancies placed in a random medium of obstacles is studied by a
between the reptation idea and other experimental measurdtonte Carlo simulation technique. This model of a coarse-
ments have been reportet8—21]. Attempts to interpret ex- grained macromolecule has been successfully used recently

Il. THE MODEL
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for studies of polymer solutions a conditions[33,34], in  wherercy,ry» are the radius vectors of the center of mass
constrained geometriggapillaries, slity [35,36, or at ad- and of the middle inner monomer of a polymer chain. With
sorbing surface$37,38, and is known to reproduce faith- gs(t) from Eq.(4) the diffusion constanDy, defined as

fully the expected Rouse behavior of a polymer system with

excluded volume interactions. In our Monte Carlo simulation 6Dy=lim[g5(t)/t] (5)
we use a standard Metropolis algorithm whereby an at- t—oo
tempted move of a randomly selected particle in a random
direction is accepted with probability, equal to and several relaxation times, 7, 73, defined ag39]
exXH — (Enew™ Eoia)/KeT], for Ejew>Eo 2 2 /52
P= 1, otherwise (1) 91(71) =(R§),92(m2) = 5(Ry),9a(73) =ga(73)  (6)

where E,, and E.4 are the energies of the new and old are calculated.

system configurations, calculated with the following interac- The simulations that have been performed use a volume
tion model potentials. of 32 and in the highest concentration regime they contain
The so called FENHfinite extensible nonlinear elastic up to 49 152 fixed monomers in 3072 chains of length

potential is used for the bonded interaction between neighN=16 which form the porous media. The single diffusing
boring beads along the chain, chain immersed into this host matrix has been chosen with
lengths of 8, 16, 32, and 64 monomers. For longer chains
=—kRAn[1—(1/R)?], for —R<r—Io<R 2) even at intermediate obstacle densities it was found that the

o, otherwise chains practically do not move. To estimate the diffusion
) ) ) constant within an error of less than 10% we performed up to

where r is the distance between two successive beads, MCS for the diffusing chain in the highest concentration

lo=0.7 is the unperturbed bond leng®=0.3 andk=20(in  regimes, and averaged the results of about 100 independent
our units of energkgT=1.0) are the elastic constant of the ryns in two or three different random media.

FENE potential which behaves as a harmonic potential for

U(r)=

r—lo<R.
The nonbonded interaction is described by a Morse poten- IIl. MAIN RESULTS
tial, A. Static properties of the diffusing chain
U(r)=Upy[exp(—2ar) —2exg —ar)], In Fig. 1 we plot the variation oRZ with an increasing

system densityC and, for comparison, also give the respec-
tive change for a system of moving mediddynamic host
wherer,;,=0.8, Uy=0.1, and the large value ai=24 matrix) of equal density. Evidently, one observes an initial
makes interactions vanish at distances larger than unity, s¢eak decline and then a growth of the gyration radius with
that an efficientink-cell algorithm[32] for short-range inter- ~ increasing density of the obstacles. This is one of our central
actions can be implemented. The total volume is therebyesults, and it does not confirm earlier predictiph but is
divided into hypothetical cells of size unity so that a particleln agreement with a more recent rei@lf. From Fig. 1 it is
in a particular cell may interact only with other particles in also seen that this increaseRf{ sets in at a lower density of
the adjacent cells (26 such cells in three dimengiomke  the porous medium when the diffusing chain is longer. We
radius of the beads and the interactions, Hgs.and (3),  believe that this crossover effect sets in when a long chain is
have been chosen such that the chains may not interse@ot able to fit into the cavities which play the role of entropic
themselves or each other in the course of their movemerittraps” in the host matrix.
within the box. If one defines an effective Flory exponemts, from the

The porous medium consists of an initially relaxed andscaling reIatiorRéocNZVeff, it is then evident from Fig. 2 that
then frozen network of polymer chains of lendtl+=16 and in contrast to the case of a polymer solution with no ob-
the monomers have the same size as those of the diffusirgjacles, where the screening of excluded volume interactions
chain. The concentration of the netwdtkis varied and the with increasing concentration renders all chains to behave
behavior of diffusing chains of various lengthis studied in  like Gaussianye— 0.5, in the porous mediumg; growsas
the good solvent regimekgT=1.0, since, from previous the free volume of the medium decreases. Of course, since
studies of the model, it is known that the temperature we deal generally with rather short chains, one could refor-
kgT,=0.62[33]. mulate this result in terms of a growingersistentength of

Several types of mean-square displacemg3@$are cal- the chains as the host matrix becomes denser, rather than in
culated as functions of time, measured in Monte Carlo stepterms ofves. One may thus conclude that in the high density
(MCS) per monomer(bead, whereby 1 MCS is the time regime of obstacles and long chain lengths the conformation
needed for all monomers to perform an attempted mov@f the chain is governed predominantly by the density fluc-

for 0<r—rip<ee (3)

AX,Ay,Az=<*+0.5 in a random direction. tuations of the porous environment. The chain follows the
5 distribution of the cavities and channels, formed in the poly-

g1(t) =([rna(t) —rn(0)]%) i izati
1 N/2 N/2 ’ mer network, and one observes an effective renormalization

D =([Frm(t) =T em(t) = Fup(0) +Fey(0)13), (4 of the Kuhn length of the chain, which becomes equal to the
92O ={[rnalV) = Tem(®) =T 0) +rem(OT), () average distance between the cavities. This leads to the ob-
gs(t)={[rem(t) —rcm(0)12), served increase of the gyration radius of the chains.
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of equilibrated polymer solutiorino fixed ob-
stacles (full symbols, and for a frozen host ma-
| trix (empty symbolsat equivalent total density.

o L
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Eventually we should also like to point out that not only tion. Thus we believe that we find a clear evidence that with
the overall dimensions of chains vary, but also the bondyrowing density of the medium the reptational character of
length (1) itself—Fig. 3. Evidently the decrease bfdoes  transport through the obstacles becomes progressively domi-
not exceed 3% but one should bear in mind that as far agating. Indeed, as the porous medium becomes denser, one
each monomer in a coarse-grained model accounts for se¥hould expect the chains to move along existing channels by
eral chemical bonds, a compression also occurs at the lengfieans of a reptational mechanism, as is demonstrated for

scale of a few bonds. Dy and r; here. We were not able to study the very high
_ _ o _ concentration regimes or longer chains, where we find that
B. Dynamic properties of the diffusing chain the diffusing chain is blocked by the obstacles and practi-

Typical dynamic properties like the scaling of diffusion cally does not move.
coefficientDy with N, Fig. 4, and of relaxation times, e.g.,

71, EQ. (6)—Fig. 5—were found to change systematically IV. CROSSOVER SCALING OF A POLYMER
from typical Rouse-like behaviorD(y<N~1,7<N?"*1) to IN A QUENCHED MEDIUM:
reptational behaviof40], ®y=N~2,7<N* as the free vol- THEORETICAL PREDICTIONS AND SIMULATIONS

ume of the porous medium decreases. Because of the very
slow dynamics of the chain among the obstacles some other
characteristic times asr; could not be determined To study the crossover scaling for the gyration radius
(73~3.77; [32,33)) within the time interval of the simula- Ry and the end-to-end distané® of a polymer chain in a

A. Crossover scaling for statics properties

o — © with obst.
+—o free
0.9 | q
08 | ' .
/O
//
v /O// FIG. 2. Variation of the effective Flory expo-
eft 0.7 ¢ 7 | nent vy With total density in a polymer solution
Y (full symbolg, and in a porous mediurtempty
e symbolg at equivalent density of the obstacles.
05 i
0.4 1 1 1 1
0.0 0.5 1.0 1.5 2.0
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Cobst
guenched random medium, we follow the work of Pauél. (Ré)OMNz” (8)

[41] about a polymer solution. In the case of diffusion of a

single chain, placed in a random medium of frozen polymekith N the length of the diffusing chain in monomer units.
chains, one must distinguish between the statistical param- at high obstacle concentratiotismall £, or for a large
eters of the diffusing chain and those of the surroundingsnoygh chain, Whe(‘R§>>§§bs we see(cf. Fig. 2 that the
immobile chains, while in the case of a polymer solufidt]  5pile polymer chain behaves more like a stretched string,

they are identical. _ . asCp s raised, which can be expressed as
The characteristic size of the pores is the correlation

length of the frozen polymer solution of obstaclggs, and <R2>O<Cx N2Veross (9)
it depends on the volume fraction of the obstacles g/ ob
— 3
Cops=CI” as with some exponent which is still to be determined. Here

ot o C¥(3v=1) 7) VerossiS the limiting value of the effective Flory exponent for
obs™ > obs ’ a diffusing chain at high obstacle concentrations.
The crossover regime occurs at obstacle den€ify,

wherev=0.588 is the Flory critical exponent. when the size of the polymer becomes equal to the sizes of
In the dilute limit the chain does not feel geometric con-the pores(R§>=§§bs. At this regime from Eqs(7) and(8) it
straints and Ry), scales as follows:
1 0'2 L 0C,x=0; Slope:-1.04 i

0 €,y = 0.125; Slope: -1.22
© C pee = 0-25; Slope: -1.45
A C,, = 0.50; Slope: -1.79
V C,pee = 0-75; Slope: -1.84
- *C,,=1.0; Slope:-2.09

10° 5
FIG. 4. Log-log plot of diffusion coefficient
z Dy Vs chain lengthN at different density of the

8 10° _ obstacles. The change of the slopes from
~—1 atCy,e=0 to ~—2 in a porous system
with vanishing free volume is given in the leg-
end.
10° .

q

10
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2
g,(t))=<R;>

10 T

o C,, = 0.75; Slope: 3.14
o C,pe = 0.50; Slope: 2.96
© €, = 0.25; Slope: 2.4
s 4 G, = 0.125; Slope: 2.29
10" v vc,,=0.00; Slope:2.22

FIG. 5. Scaling of relaxation time;, Eq. (6),
with chain lengthN at several obstacle densities.

T, 10° L .

110 The limiting slope values 2.22 and 2.96 are close
to 2.18 and 3, characteristic for Rouse- and rep-
tational behavior, respectively.

10° | 1
2 1
10 10’ N 10°
;bsocN*<3V*1)_ (10) power of { in Eq. (13) is about 0.37-0.64. However, when

we plot the scaling function, f,, expressed as
The exponenk in Eq. (9) has to be determined from the (R3)/N?*(12) vs N(CI®)*®~1 in contrast to[41] we do
condition of a smooth matching between E(.and(9) at  not obtain any reasonable scaling for lage 1 [Fig. 6a)].

Cops= Ckps Which yields We observe a good scaling only if we pkiR;)/N2(12)
vs N(CI%)Z(»=1) [Fig. 6(b), region I,I] and the slope of
g g~ Veross (11) fgyr in @ log-log plot atN(C1%)2(*~1)>1 in region Il equals
1-3v° 0.6, as indicated by the solid line, that corresponds to

Verose= 0.78 in EqQ. (13). This result can be explained by
When substituted in E¢(9) and using Eq(7) renormalization of the polymer length, taking into account
the growing persistent length of the chains as the host matrix
becomes denser, as has already been mentioned above. The
(12  sufficiently long chain follows the distribution of cavities,
) ) formed in the polymer network, so that neighboring cavities
Using as a new variable are separated from each other by narrow chanfisstle-
£=(Ro)oapem NrCH(3r-1) necks. The average number of monomeref the chain per
9/0750bs obs : cavity of characteristic sizé, is

< RS) «C 1)(21)7 2vgrosd/(3v—1) NZVcrossx 527 2Vcross/VN2Vcross_
obs

the relative change of the gyration radius with the concentra- e gl UG ) (14
tion of obstacles in the system can be expressed as a cross- 9% Eobs™ “ops '
over scaling functiorfy,({) of the parametet, which be-

haves at the limiting cases as If we neglect the fraction of monomers, situated in bottle-

necks, the number of globulésr, the number of occupied

(R?) const, (<1 cavities Ny per chain will be
7= faN"Coid ™) = ~[2-2(vgrosd V)]
(Ryo (e > 1(-13) Ng=N/gexNCU3* (15)

The main difference in our result in comparison to the@nd, consequently,
case of a polymer solution is the different power Hofor

large ¢>1. In the case of a polymer solution, where NgCobs” HMorNC3S" ™. (16)
Veross 0.5, this exponent is equal to(2— 1/v) ~ —1/3, thus . . _
determining a decreasing scaling functity,(¢) for {>1, This means that we obtain a good scalingfgf;, as a

while in the case of a porous medium we obtain an exponerfunction of Ny(CI3)YE~D=N(CI3)?( 1) rather than of
equal to— (2~ 2vgesd ¥) >0 fOr vgess> v since the confor-  N(CI3)YE 1),

mations of the chain in the host matrix are not Gaussian. Consequently, Eq(13) becomes valid if for{>1 the
Hence, we should expect an increasing power-law behavigvolymer lengthN is replaced by the renormalized length
of fgy(¢) for {>1. Within the range of lengths of chains Ngy. As far as for{<1 the crossover functiofig,({) is a
which do really diffuse through the medium we measure atonstant, independent ¢f we may formally replac®& with
high obstacle densityv.s<=0.7-0.78, (Fig. 2 and the Ng in { even for{<1, thus obtaining the same crossover
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o N:64 Veross= 0-78.
= o
—-—- Slope: 0.6
--------------- Expected scaling 7
0 o,
N_ _e/él
‘?‘V 10° B--C-g---B---Cg---Bg & // |
£ A I
7 s
~ s
% a R
D///
PPN
o,
Lo"®
B--Cog---G---¢p---80C "%
1 I i1
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function, but of a modified argument,,=N*C2/(3»~1  gion lll]. An indication for this expected behavior is sug-

[note that/,,, dependence on densi,,sis heresquaredin ~ 9gested by Fig. 1, where fdi=64 andC>1 the gyration

contrast to Eq(13)]. radiusR, appears to saturate with obstacle den€ityThe
Our main conclusion is that the crossover scaling functiors@me considerations are also valid for the mean-square end-

for, derived for polymer solutions, can be applied to theto-end distancéR?), which is proportional to(Rg) with a

case of a polymer in porous media when the scaling variabléctor of 6, and is depicted in Fig. 6 too.

{ is replaced by, due to the renormalization of the Kuhn

length of the chain. This renormalized Kuhn length should

reflect thus the properties of the porous medium rather than B Crossover scaling for the diffusion coefficienDy

characterize those of the unperturbed polymer chain itself. |n a similar way we analyze the crossover scaling of the

When the free volume of the porous medium is small we usgjiffusion coefficient too. In the dilute limit we observe

an exponentssrather than the Gaussian exponent of 0.5.Rouse behavior ob

Moreover, for very long chains,N—x, we expect

Veross— Vs 1.€., in the asymptotic limit> 1 the chain should DReeN~h 17

behave as a self-avoiding random watke cavities in the

porous medium, already occupied by parts of the chain, re-

main unaccessible for the rest of the chaiith a step length At high obstacle concentrations we find reptational diffu-

determined by the properties of the medilifig. 6(b), re-  sive behavior(cf. Fig. 4 which could be expressed as
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Cobs
DNocN*ZCgbs_ (18 the density dependence of monomeric friction and is calcu-

lated fromg.(t) defined with Eq(4) as suggested i®1]. Its

The smooth matching of these two equations at the crossatroduction is needed in order to allow for the effect of

over regime yields the sanzeas for a polymer solutiof1]:
z=-1/(3v—-1) (19
and

Dy N~2C, U1 (20)

Hence the relativgdimensionless diffusion coefficient

DN/DRI becomes a scaling functidp,({) of the ratio of two
characteristic lengthg= (Ry/£op9

fp(£)=fp(NCLE™Y). (21)

However, the density depence Dfy is not trivial. Fol-

chain ends movements which are much faster than those of
the inner monomers and affect the scaling of time. As a
matter of fact, one needs a measure of how the elementary
movements of the monomers, which contribute essentially to
diffusion, change with varying density of the medium. This
is evident from Fig. 7a) where the acceptance rate of the
attempted moved\ (that is, the percentage of successful
jumps over the total number of attempted moves per mono-
mern is shown to scale al~! in consequence of the higher
mobility of monomers near the chain ends. Sidces aver-
aged over all monomers of the chain, the behavior shown in
Fig. 7(a) is observed. The extrapolatetll{>«) acceptance
rate A, plotted as (I2)A*/{1?),A; and mobility
(I2YWI{1%)oW,, where the subscript O denotes extrapolation

lowing Paul et al. [41] we introduce, in our analysis, the to C.,=0, showdFig. 7(b)] similar behavior, as in the case

effective monomer reorientation ra¥¥ which accounts for

of a solution[41,39.
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V. DISCUSSION

There is a difference, however, betwe@nand W, the

latter decaying much faster with increasing density than . L . .
ying 9 Y In the present investigation we examine the variation of

SinceA refers toall attempted moves, including highly cor- ) ) ) : . .
related ones like forward and backward jumps, which conStatic and dynamic properties of isolated polymer chains dif-

tribute nothing to the chains movement, one sees from Figfusing in a quenched environment of randomly distributed
7(b) that for C,,= 0.5 only about 50% of the moves contrib- polymer chains with increasing density of the medium. Since
ute to diffusion as compared ©,,.= 0. Therefore we plotin we focus our studies on chain lengths for which a detectable
a log-log scale the normalized diffusion coefficient displacement of the chain center of mass is still possible, our
NDyN/W(I%) vs N(CI®)YC~1_Fig. 8a—and vs findings deviate from some previous analytic predictifhis
N(CI®)2»1)_Fig. gb). Again we find poor scaling for and support other2], based on a different treatment.
N(CI3)¥(3»=1) 35 scaling variablgFig. 8@)], and much bet- Thus clear evidence for a change from Rouse-like to rep-
ter scaling forN(CI1%)2G»~1) [Fig. 8b)]. This suggests that tational dynamics with decreasing free volume of the porous
the renormalization effects, discussed above, play an impomedium is produced which proves that our coarse-grained
tant role for the dynamics too, and we must usepolymer chains are still long enough so as to perform repta-
{m=Ng(CP)YE~D=N(CI%)#G"~1 from Eg. (16) as an tional movement between adjacent potential wells.
argument for the scaling function. With this rescaled variable The static host matrix, in which our species move, is ob-
we do see all three curves in Fig(@ collapse on a single served to lead to progressive stretching of the chains as the
master curve in Fig. @) which qualitatively resembles that cavities of the medium decrease in size with growing den-
for a polymer solutiof41]. sity. Assuming that such cavities are filled with monomers
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